期刊专题

10.11896/jsjkx.210300111

基于U-net++网络的弱光图像增强方法

引用
弱光图像增强是计算机视觉中最具挑战性的任务之一,现有算法存在亮度不均、对比度低、颜色失真和噪声严重等问题.文中提出了一种基于改进U-net++网络实现更为自然的暗光增强网络框架.首先,输入弱光图像至改进U-net++网络,利用各层密集连接以增强不同层次图像特征的关联性;其次,把各层次图像特征融合后输入卷积网络层进行细节重建.实验结果证明,该方法在提高图像亮度的同时,更好地恢复了弱光图像的细节特征,并且生成正常光图像的颜色特征更接近自然.在PASCAL VOC测试集上的测试结果显示结构相似度(SSIM)和峰值信噪比(PSNR)两个重要指标分别为0.87和26.36,比同类最优算法分别高出18.6%和11.4%.

弱光增强;U-net++网络;细节重建;密集连接

48

TP391(计算技术、计算机技术)

湖南省自然科学基金2020JJ4670

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

278-282

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn