期刊专题

10.11896/jsjkx.201200202

基于用户兴趣词典和LSTM的个性化情感分类方法

引用
微博是一个可以分享生活、发表看法、发泄情感的社交平台,由于数据量大且易于获取,微博数据已被广泛用于网络用户情感分析.传统对微博进行情感预测的研究没有考虑用户的用词喜好、语言风格等个性化因素的影响,使得情感分类结果的准确性不高.首先通过分析用户兴趣特征构建用户兴趣词典,在此基础上提出基于用户兴趣词典的情感分类模型;然后利用长短期记忆网络(Long Short-Term Memory,LSTM)分类准确性高的特点训练一个通用的LSTM分类模型;最后利用支持向量机融合不同模型以得到最终的情感分类结果.实验结果表明,与支持向量机、朴素贝叶斯等传统分类器相比,基于用户兴趣词典与LSTM的个性化情感分类方法在分类精度上有较大提升;与LSTM、循环神经网络等深度学习方法相比,该方法在保证运行效率的前提下能获得更高的分类精度.

情感分类;用户兴趣词典;LSTM模型;支持向量机

48

TP301.6(计算技术、计算机技术)

国家社科基金项目;教育部人文社科项目;国家自然科学基金项目;天津市自然科学基金项目;内蒙古纪检监察大数据实验室2020-2021年度开放课题

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

251-257

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn