期刊专题

10.11896/jsjkx.210100211

知识图谱嵌入的高阶协同过滤推荐系统

引用
针对推荐系统存在的数据稀疏问题,传统的协同过滤方法无法捕捉辅助信息之间的相关性,从而降低了推荐的准确度,文中提出KGE-CF模型,引入了知识图谱作为辅助信息,利用知识图谱中多源结构性的数据来缓解数据稀疏问题.KGE-CF结合多层感知机捕获高阶非线性特征的能力,能够学习出用户与项目更深层次的交互信息,从而提升推荐质量.首先,KGE-CF模型将用户的历史交互项目与知识图谱中的实体进行映射,并且利用知识图谱的翻译模型进行训练,得到实体嵌入向量与关系向量,并依据"兴趣迁移"思想进一步学习出更为丰富的用户向量;然后,模型将学习得到的用户向量与项目向量拼接,作为多层感知机的输入,捕捉用户与项目之间的高阶特征信息;最后,通过一个sigmoid函数得到用户对候选项目的偏好程度.通过在真实数据集上的实验,证明了提出的KGE-CF模型在点击率预测和top-k两种推荐场景下均优于其他方法.

知识图谱;多层感知机;推荐系统;协同过滤;数据稀疏性

48

TP3(计算技术、计算机技术)

四川省重点研发计划;四川大学-自贡市校地科技合作专向基金;山西省青年科技研究基金项目

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

244-250

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn