期刊专题

10.11896/jsjkx.210300205

基于KL-Ball的社区挖掘方法

引用
针对邻接矩阵的稀疏特性,采用KL散度来计算网络节点间的距离,提出了一种基于KL-Ball的社区挖掘方法.该方法中,一个KL-Ball代表一个社区,它从质心、半径、互信息及密度4个方面来描述社区,其中质心决定了社区在网络中的位置,半径刻画了社区所能覆盖的范围,互信息度量了社区中包含节点的一致性,密度反映了社区包含节点的数量.给定一个半径,期望从复杂网络中寻找具有低信息、高密度的社区,低信息使得社区包含的节点具有较强的一致性,高密度使得一个社区具有较强的凝聚性.为此,定义了一个基于KL-Ball的社区挖掘目标函数,给出它的优化算法,并从理论上证明了该算法的收敛性.依据社区半径的大小及质心的位置,该算法可应用于非重叠社区挖掘以及重叠社区挖掘.实验结果表明,基于KL-Ball的社区挖掘方法可有效地挖掘网络中蕴含的社区结构,包括非重叠的社区及重叠的社区.

社区挖掘;KL散度;非重叠社区;重叠社区

48

TP391(计算技术、计算机技术)

国家自然科学基金62002330

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

236-243

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn