期刊专题

10.11896/jsjkx.210600124

基于LSTM混合模型的比特币价格预测

引用
聚焦于具有极度非线性、非平稳性等特征的比特币价格预测问题,在长短时记忆网络(Long Short-Term Memory,LSTM)基础上构建了4个混合预测模型,利用小波变换(Wavelet Transform,WT)以及自适应噪声的完备经验模态分解(Com-plete Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)对序列进行分解与重构,并引入了样本熵(Sample Entropy,SE)进行重构优化,使用LSTM对重构以后的子序列分别进行预测,最后将其叠加得到最终的预测结果.在预测结果的评判上,使用均方根误、平均绝对百分误以及希尔不等系数来进行拟合评价,并将结果与单一LSTM模型进行比较.研究发现混合模型的预测准确性均优于单一模型,且样本熵的引入可有效降低预测误差.

比特币价格;长短时记忆网络;小波变换;自适应噪声完备经验模态分解;样本熵

48

TP183(自动化基础理论)

中央高校基本科研业务费专项基金;中央财经大学新兴交叉学科建设项目

2021-11-22(万方平台首次上网日期,不代表论文的发表时间)

共7页

39-45

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn