期刊专题

10.11896/jsjkx.200800004

基于Transformer和多通道卷积神经网络的情感分析研究

引用
文本情感分析是自然语言处理的经典领域之一.文中提出了一种基于transformer特征抽取器联合多通道卷积神经网络的文本情感分析的模型.该模型使用transformer特征提取器在传统Word2vector,Glove等方式训练的静态词向量的基础上来进行单词的分层、动态表示,针对特定数据集采用Fine-Tuning方式来进行训练有效提升了词向量的表征能力.多通道卷积神经网络考虑了不同大小范围内词序列之间的依赖关系,有效进行特征抽取并达到降维的目的,能够有效捕捉句子的上下文语义信息,使模型捕获更多的语义情感信息,提升文本的语义表达能力,通过Softmax激活函数达成情感倾向分类的目标.模型分别在IMDb和SST-2电影评论数据集上进行实验,测试集上准确率达90.4%和90.2%,这明所提模型较传统词嵌入结合CNN或RNN的模型在分类精确度上有了一定程度的提升.

情感分类、特征提取器、Transformer、多通道卷积神经网络

48

TP391.1(计算技术、计算机技术)

云南科技项目;云南科技项目

2021-07-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

349-356

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn