面向法律裁判文书的生成式自动摘要模型
当前面向中文内容的自动摘要模型应用于法律裁判文书时,主要采用抽取式方法进行摘要.但由于法律文本比较冗长、结构化程度较低,抽取式摘要的精准度和可靠性有所欠缺.为了获得法律裁判文书的高质量文本摘要,文中提出了一种生成式多模型融合的自动摘要方法.在Seq2Seq模型的基础上,引入注意力(attention)机制,同时通过Bert预训练和强化学习等方法,结合选择门技术,提出了BASR(Bert Based Attention Seq2Seq Reinforced Model)模型.将50000篇法律裁判文书作为语料,以小额诉讼和简易程序类型的裁判文书为代表性研究对象,实验结果证明新模型有较好的效果,在ROUGE评价中相比传统的Seq2Seq+Attention模型取得了均值5.81%的性能提升.
裁判文书;自动摘要;模型融合;Seq2 Seq;注意力机制;强化学习
48
TP18(自动化基础理论)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共6页
331-336