基于双嵌入卷积神经网络的涉案微博评价对象抽取
涉案微博的评价对象抽取是一个特定领域的任务,其评价对象词表达多样且含义与通用领域不同,仅依赖于通用领域的词嵌入无法很好地表征这些评价对象词.为此,提出了一种综合利用领域词嵌入和通用词嵌入的涉案微博评价对象抽取方法.首先对涉案微博文本进行预训练,得到具有涉案领域特征的嵌入层,其次将微博评论分别输入两个嵌入层,得到不同领域对评价对象的表征结果并进行拼接操作,然后通过卷积层抽取出与案件相关的特征,最后利用分类器对序列进行标记,以提取涉案微博评价对象.实验结果表明,所提方法的F1值在#重庆公交车坠江案#和#奔驰女司机维权案#的两个数据集上分别达到了72.36%和71.02%,较现有的基准模型有所提升,验证了不同领域词嵌入对涉案微博评价对象抽取的影响.
微博;评价对象抽取;双嵌入;卷积神经网络
48
TP311(计算技术、计算机技术)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共5页
319-323