基于改进鲸鱼算法的无人机三维路径规划
无人机三维路径规划是一个比较复杂的全局优化问题,其目标是在考虑威胁和约束的条件下,获得最优或接近最优的飞行路径.针对鲸鱼算法在进行无人机三维航迹规划时,存在容易陷入局部最优、收敛速度较慢、收敛精度不够高等问题,提出了一种基于莱维飞行(Lévy flight)的鲸鱼优化算法(Levy Flight Based on Whale Optimization Algorithm,LWOA),用于解决无人机三维路径规划问题.该算法在迭代过程中加入了Levy飞行对最优解进行随机扰动;引入了信息交流机制,通过当前全局最优解和个体记忆最优解以及邻域最优解来更新个体的位置,能够更好地权衡局部收敛和全局开发.仿真结果表明,所提路径规划算法可以有效避开威胁区,收敛速度更快,收敛精度更高,且更不易陷入局部最优解.当迭代次数为300次、种群个数为50时,LWOA算法求得的成本函数值是PSO算法的91.1%,是GWO算法的92.1%,是WOA算法的95.9%,航迹代价更小.
三维路径规划;启发式算法;鲸鱼算法;信息交流机制;莱维飞行
48
TP301(计算技术、计算机技术)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共8页
304-311