基于自指导动作选择的近端策略优化算法
强化学习领域中策略单调提升的优化算法是目前的一个研究热点,在离散型和连续型控制任务中都具有了良好的性能表现.近端策略优化(Proximal Policy Optimization,PPO)算法是一种经典策略单调提升算法,但PPO作为一种同策略(on-policy)算法,样本利用率较低.针对该问题,提出了一种基于自指导动作选择的近端策略优化算法(Proximal Policy Optimiza-tion Based on Self-Directed Action Selection,SDAS-PPO).SDAS-PPO算法不仅根据重要性采样权重对样本经验进行利用,而且增加了一个同步更新的经验池来存放自身的优秀样本经验,并利用该经验池学习到的自指导网络对动作的选择进行指导.SDAS-PPO算法大大提高了样本利用率,并保证训练网络模型时智能体能快速有效地学习.为了验证SDAS-PPO算法的有效性,将SDAS-PPO算法与TRPO算法、PPO算法和PPO-AMBER算法用于连续型控制任务Mujoco仿真平台中进行比较实验.实验结果表明,该方法在绝大多数环境下具有更好的表现.
强化学习;深度强化学习;策略梯度;近端策略优化;自指导
48
TP181(自动化基础理论)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共7页
297-303