期刊专题

10.11896/jsjkx.201000163

基于自指导动作选择的近端策略优化算法

引用
强化学习领域中策略单调提升的优化算法是目前的一个研究热点,在离散型和连续型控制任务中都具有了良好的性能表现.近端策略优化(Proximal Policy Optimization,PPO)算法是一种经典策略单调提升算法,但PPO作为一种同策略(on-policy)算法,样本利用率较低.针对该问题,提出了一种基于自指导动作选择的近端策略优化算法(Proximal Policy Optimiza-tion Based on Self-Directed Action Selection,SDAS-PPO).SDAS-PPO算法不仅根据重要性采样权重对样本经验进行利用,而且增加了一个同步更新的经验池来存放自身的优秀样本经验,并利用该经验池学习到的自指导网络对动作的选择进行指导.SDAS-PPO算法大大提高了样本利用率,并保证训练网络模型时智能体能快速有效地学习.为了验证SDAS-PPO算法的有效性,将SDAS-PPO算法与TRPO算法、PPO算法和PPO-AMBER算法用于连续型控制任务Mujoco仿真平台中进行比较实验.实验结果表明,该方法在绝大多数环境下具有更好的表现.

强化学习;深度强化学习;策略梯度;近端策略优化;自指导

48

TP181(自动化基础理论)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

297-303

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn