期刊专题

10.11896/jsjkx.210300060

基于矩阵分解的属性网络嵌入和社区发现算法

引用
属性网络不但包含节点之间复杂的拓扑结构,还包含拥有丰富属性信息的节点,其可以比传统网络更有效地建模现代信息系统,属性网络的社区划分对于分析复杂系统的层次结构、控制信息在网络中的传播和预测网络用户的群体行为等方面具有重要的研究价值.为了更好地利用拓扑结构信息和属性信息进行社区发现,提出了一种基于矩阵分解的属性网络嵌入和社区发现算法(CDEMF).首先提出基于矩阵分解的属性网络嵌入方法,基于网络局部链接信息计算相邻节点的相似性,将其与属性接近度联合建模,通过矩阵分解的分布式算法得到每个节点对应的低维嵌入向量,即把网络节点映射为低维向量表示的数据点集合.接着提出基于曲率和模块度的社区划分方法,自动确定数据点集合中蕴含的社区数量,并通过对数据点集合聚类完成属性网络社区划分.在真实网络数据集上,将CDEMF方法与其他8种知名算法进行比较,实验结果表明CDEMF具有良好的性能.

属性网络嵌入;矩阵分解;自动聚类;社区发现;曲率

48

TP391(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

204-211

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn