期刊专题

10.11896/jsjkx.201100090

基于卷积神经网络的代码注释自动生成方法

引用
自动化代码注释生成技术通过分析源代码的语义信息生成对应的自然语言描述文本,可以帮助开发人员更好地理解程序,降低软件维护的时间成本.大部分已有技术是基于递归神经网络(Recurrent Neural Network,RNN)的编码器和解码器神经网络实现的,但这种方法存在长期依赖问题,即在分析距离较远的代码块时,生成的注释信息的准确性不高.为此,文中提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的自动化代码注释生成方法来缓解长期依赖问题,以生成更准确的注释信息.具体而言,通过构造基于源代码的CNN和基于AST的CNN来捕获源代码的语义信息.实验结果表明,与DeepCom和Hybrid-DeepCom这两种最新的方法相比,在常用的BLEU和METEOR两种评测指标下,所提方法能更好地生成代码注释,且执行时间更短.

程序理解;代码注释生成;卷积神经网络;长短期记忆网络

48

TP311(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共8页

117-124

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn