基于多维度特征和混合神经网络的代码可读性评估方法
对代码可读性进行定量、准确的评估是有效保障软件质量、降低沟通成本以及维护成本、提高软件开发和演化效率的重要途径.然而,现有的针对代码可读性评估的研究方案大多是基于特征工程的,受到源代码表征方式、技术手段等多方面因素影响,其评估准确率并不高.为此,文中采用深度学习作为主要技术手段,提出了一种基于多维度特征和混合神经网络的代码可读性评估方法,通过整合并运用各种单一神经网络的优势,从字符级、词条级等不同维度挖掘源代码中蕴含的结构信息和语义信息,最终实现对代码可读性的量化评估.实验表明,该方法能够获得高达84.6%的评估准确率,比单独使用卷积神经网络提升了9.2%,比单独使用循环神经网络模型提升了6.5%,并且其表现优于现有的5个可读性模型,验证了所提出的多维度特征和混合神经网络的有效性.
代码可读性;代码表征;深度学习;代码分析;软件质量保障
48
TP311(计算技术、计算机技术)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共6页
94-99