基于次模函数最大化的测试用例集约简
随着软件回归测试规模的不断增大和成本的不断增加,测试用例集约简对于提高软件的回归测试效率显得愈发重要.在选取测试用例子集时,需考虑该子集的代表性和多样性,并采用一个有效的算法来求解.针对该测试用例集约简问题,文中提出了一种基于次模函数最大化的算法SubTSR.尽管引入的离散优化问题是NP-hard问题,但文中利用其目标函数的次模性,采用启发式贪心搜索,求得有近似度保证的次优解.在15个数据集上对SubTSR算法与其他测试用例集约简算法展开实验,针对平均错误检出率、错误检测损失率、首次错误检出位等指标,尝试改变LDA处理中的主题个数以及衡量测试用例相似度的距离,以验证SubTSR算法的有效性.实验结果表明,SubTSR算法在错误检出性能上较其他算法有着较大提升,且在多个数据集上的表现保持相对稳定.在主题个数变化引起文本表示变化时,采用曼哈顿距离的SubTSR算法的性能相较其他算法仍能保持相对稳定.
软件测试;测试用例集约简;错误检测;主题模型;次模函数
48
TP391(计算技术、计算机技术)
2021-12-13(万方平台首次上网日期,不代表论文的发表时间)
共10页
75-84