期刊专题

10.11896/jsjkx.210300266

基于预训练和深度哈希的大规模文本检索研究

引用
针对文本检索中存在的检索效率和准确率不高的问题,提出一种基于预训练语言模型和深度哈希方法的检索模型.该模型首先通过迁移学习的方法引入预训练语言模型中所包含的文本先验知识,之后进行特征提取,将输入转化为高维的向量表示.在整个模型的后端加入哈希学习层,通过设计特定的优化目标对模型的参数进行微调,从而在训练中动态地学习哈希函数和每个输入的唯一哈希表示.实验表明,该方法的检索准确率相较于其他基准模型在top-5和top-10指标上分别有至少21.70%和21.38%的提升,哈希码的引入使得模型在仅损失4.78%准确率的前提下将检索速率提升了 40倍,因此该方法能够显著提升检索准确率和效率,且在文本检索领域有着潜在应用前景.

深度学习;相似性检索;预训练语言模型;深度哈希

48

TP391.1(计算技术、计算机技术)

国家自然科学基金61806221

2021-12-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

300-306

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn