期刊专题

10.11896/jsjkx.201200016

面向中文医疗事件的联合抽取方法

引用
临床病历电子化的推广普及使得利用自动化的方法从病历中快速抽取高价值的信息成为可能.作为一种重要的医学信息,肿瘤医疗事件由描述恶性肿瘤的一系列属性构成.近年来,肿瘤医疗事件抽取已成为学术界的一个研究热点,众多学术会议将其发布为评测任务,并提供了一系列高质量的标注数据.针对肿瘤医疗事件属性离散的特点,文中提出了一种中文医疗事件的联合抽取方法,实现了肿瘤原发部位和原发肿瘤大小两种属性的联合抽取和肿瘤转移部位的抽取.此外,针对肿瘤医疗事件标注文本的数量和类型少的问题,提出了一种基于关键信息全域随机替换的伪数据生成算法,提升了联合抽取方法对不同类型肿瘤医疗事件抽取的迁移学习能力.所提方法获得了 CCKS2020中文电子病历临床医疗事件抽取评测任务的第三名,在CCKS2019和CCKS2020数据集上的大量实验验证了所提方法的有效性.

中文电子病历;医疗事件抽取;迁移学习;联合抽取;肿瘤事件

48

TP391(计算技术、计算机技术)

国家自然科学基金61532001

2021-12-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

287-293

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(11)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn