MLCPM-UC:一种基于模式实例分布均匀系数的多级co-location模式挖掘算法
空间co-location(并置)模式是一组空间特征的子集,其实例在空间中频繁地邻近出现.由于空间数据同时存在关联性和异质性,co-location模式实例的分布或在整个研究区域中全局出现(全局co-location模式),或在研究区域的局部区域出现(区域co-location模式),从而提出了多级co-location模式挖掘.当前的多级co-location模式挖掘方法存在两个问题:1)已有的多级co-location模式挖掘方法忽略了模式在空间中的分布特性,未能准确区分全局和区域co-location模式;2)已有的多级模式挖掘方法将全局非频繁co-location模式作为候选区域co-location模式,导致候选区域co-location模式数量过多.针对以上问题,首先,定义了模式的实例分布均匀系数,在考虑模式频繁性的同时考虑了模式在空间中的分布情况,从而正确、高效地识别出全局和区域co-location模式.其次,基于模式的实例分布均匀系数,设计了一个有效的多级co-location模式挖掘算法,提出了有效的剪枝策略以提高算法效率.最后,在真实和合成数据集上进行了广泛的实验,验证了所提方法的正确性和高效性.
空间数据挖掘;多级co-location模式;空间异质性;均匀系数
48
TP311(计算技术、计算机技术)
国家自然科学基金项目;云南省创新团队基金项目;云南大学研究生科研创新基金项目
2021-12-08(万方平台首次上网日期,不代表论文的发表时间)
共11页
208-218