基于最优间隔的AdaBoostv算法的非平衡数据分类
为了解决非平衡数据分类问题,提出了一种基于最优间隔的AdaBoostv算法.该算法采用改进的SVM作为基分类器,在SVM的优化模型中引入间隔均值项,并根据数据非平衡比对间隔均值项和损失函数项进行加权;采用带有方差减小的随机梯度方法(Stochastic Variance Reduced Gradient,SVRG)对优化模型进行求解,以加快收敛速度.所提基于最优间隔的AdaBoostv算法在样本权重更新公式中引入了一种新的自适应代价敏感函数,赋予少数类样本、误分类的少数类样本以及靠近决策边界的少数类样本更高的代价值;另外,通过结合新的权重公式以及引入给定精度参数v下的最优间隔的估计值,推导出新的基分类器权重策略,进一步提高了算法的分类精度.对比实验表明,在线性和非线性情况下,所提基于最优间隔的Ada-Boostv算法在非平衡数据集上的分类精度优于其他算法,且能获得更大的最小间隔.
非平衡数据;SVRG;AdaBoostv;最优间隔;自适应代价敏感函数
48
TP181(自动化基础理论)
国家自然科学基金项目;河北省科技计划重点研发项目
2021-12-08(万方平台首次上网日期,不代表论文的发表时间)
共8页
184-191