期刊专题

10.11896/jsjkx.200900172

面向小目标检测的改进RetinaNet模型及其应用

引用
基于深度学习的目标检测算法广泛应用于工业检测,RetinaNet算法因兼具速度与精度两方面的优势而备受关注,但对于小于32×32像素的小目标,该算法的检测精度不能满足工业检测的要求.为此,文中以增强小目标的训练为基本思路,针对RetinaNet算法进行了如下改进:在采样阶段,将低层特征图P2添加到FPN中,以确保小目标能被充分采样,同时引入自适应训练样本选择策略,以保证增加特征层之后仍能保持足够快的检测速度;在训练后期采用了损失权重调整策略,用于提高小目标中困难样本的拟合度.针对公共数据集MS COCO 2017及实际应用中的LED点胶工业数据集,改进后的方法使小于32×32目标的检测精度分别提高了4.1%和10.7%,这表明改进后的方法能显著提升小目标检测的水平.

深度学习;小目标检测;RetinaNet;自适应采样

48

TP391(计算技术、计算机技术)

国家自然科学基金;国家重点基础研究发展计划;安徽省科技攻关计划

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

233-238

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn