期刊专题

10.11896/jsjkx.200800191

基于密度峰值聚类的高斯混合模型算法

引用
由于存在大量服从高斯分布的样本数据,采用高斯混合模型(Gaussian Mixture Models,GMM)对这些样本数据进行聚类分析,可以得到比较准确的聚类结果.通常采用EM算法(Expectation Maximization Algorithm)对GMM的参数进行迭代式估计.但传统EM算法存在两点不足:对初始聚类中心的取值比较敏感;迭代式参数估计的迭代终止条件是相邻两次估计参数的距离小于给定的阈值,这不能保证算法收敛于参数的最优值.为了弥补上述不足,提出采用密度峰值聚类(Density Peaks Clustering,DPC)来初始化EM算法,以提高算法的鲁棒性,采用相对熵作为EM算法的迭代终止条件,实现对GMM算法参数值的优化选取.在人工数据集及UCI数据集上的对比实验表明,所提算法不但提高了EM算法的鲁棒性,而且其聚类结果优于传统算法.尤其在服从高斯分布的数据集上的实验结果显示,所提算法大幅提高了聚类精度.

密度峰值聚类;相对熵;高斯混合模型;EM算法;聚类算法

48

TP391.4(计算技术、计算机技术)

国家自然科学基金61572242

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共6页

191-196

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn