期刊专题

10.11896/jsjkx.210300271

基于深度神经网络和自注意力机制的医学实体关系抽取

引用
随着医学信息化的推进,医学领域已经积累了海量的非结构化文本数据,如何从这些医学文本中挖掘出有价值的信息,是医学行业和自然语言处理领域的研究热点.随着深度学习的发展,深度神经网络被逐步应用到关系抽取任务中,其中"recurrent+CNN"网络框架成为了医学实体关系抽取任务中的主流模型.但由于医学文本存在实体分布密度较高、实体之间的关系交错互联等问题,使得"recurrent+CNN"网络框架无法深入挖掘医学文本语句的语义特征.基于此,在"recurrent+CNN"网络框架基础之上,提出一种融合多通道自注意力机制的中文医学实体关系抽取模型,包括:1)利用BLSTM捕获文本句子的上下文信息;2)利用多通道自注意力机制深入挖掘句子的全局语义特征;3)利用CNN捕获句子的局部短语特征.通过在中文医学文本数据集上进行实验,验证了该模型的有效性,其精确率、召回率和F1值与主流的模型相比均有提高.

医学文本;实体关系抽取;多通道自注意力;深度学习

48

TP391(计算技术、计算机技术)

四川省重点研发项目2020YFG0035

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

77-84

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn