多源异构用户生成内容的融合向量化表示学习
随着移动网络和APPs的发展,包含用户评价、标记、打分、图像和视频等多源异构数据的用户生成内容(User Genera-ted Contents,UGC)成为提高个性化服务质量的重要依据,对这些数据的融合和表示学习成为其应用的关键.对此,提出一种面向多源文本和图像的融合表示学习.采用Doc2vec和LDA模型,给出多源文本的向量化表示,采用深度卷积网络获取与评价文本相关的图像特征;给出多源文本向量化表示的多策略融合机制,以及文本和图像卷积融合的表示学习.将所提算法应用于亚马逊含UGC内容的商品数据集上,基于UGC向量化表示物品的分类准确率说明了该算法的可行性和有效性.
用户生成内容;表示学习;多源异构;融合;短文本
48
TP391(计算技术、计算机技术)
国家自然科学基金61876184
2021-10-22(万方平台首次上网日期,不代表论文的发表时间)
共8页
51-58