期刊专题

10.11896/jsjkx.200900194

多源异构用户生成内容的融合向量化表示学习

引用
随着移动网络和APPs的发展,包含用户评价、标记、打分、图像和视频等多源异构数据的用户生成内容(User Genera-ted Contents,UGC)成为提高个性化服务质量的重要依据,对这些数据的融合和表示学习成为其应用的关键.对此,提出一种面向多源文本和图像的融合表示学习.采用Doc2vec和LDA模型,给出多源文本的向量化表示,采用深度卷积网络获取与评价文本相关的图像特征;给出多源文本向量化表示的多策略融合机制,以及文本和图像卷积融合的表示学习.将所提算法应用于亚马逊含UGC内容的商品数据集上,基于UGC向量化表示物品的分类准确率说明了该算法的可行性和有效性.

用户生成内容;表示学习;多源异构;融合;短文本

48

TP391(计算技术、计算机技术)

国家自然科学基金61876184

2021-10-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

51-58

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn