基于情节经验回放的深度确定性策略梯度方法
强化学习中的连续控制问题一直是近年来的研究热点.深度确定性策略梯度(Deep Deterministic Policy Gradients,DDPG)算法在连续控制任务中表现优异.DDPG算法利用经验回放机制训练网络模型,为了进一步提高经验回放机制在DDPG算法中的效率,将情节累积回报作为样本分类依据,提出一种基于情节经验回放的深度确定性策略梯度(Deep Determinis-tic Policy Gradient with Episode Experience Replay,EER-DDPG)方法.首先,将经验样本以情节为单位进行存储,根据情节累积回报大小使用两个经验缓冲池分类存储.然后,在网络模型训练阶段着重对累积回报较大的样本进行采样,以提升训练质量.在连续控制任务中对该方法进行实验验证,并与采取随机采样的DDPG方法、置信区域策略优化(Trust Region Policy Op-timization,TRPO)方法以及近端策略优化(Proximal Policy Optimization,PPO)方法进行比较.实验结果表明,EER-DDPG方法有更好的性能表现.
深度确定性策略梯度;连续控制任务;经验回放;累积回报;分类经验回放
48
TP181(自动化基础理论)
国家自然科学基金;江苏省高等学校自然科学研究重大项目;吉林大学符号计算与知识工程教育部重点实验室资助项目;苏州市应用基础研究计划工业部分;江苏省高校优势学科建设工程资助项目
2021-10-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
37-43