期刊专题

10.11896/jsjkx.200800014

利用生成对抗网络的人脸图像分步补全法

引用
人脸图像修复技术是近年来图像处理领域的研究热点,而人脸图像大面积缺失导致损失语义信息过多,一直是该领域的重点难点问题.针对这一问题,文中提出了一种基于生成对抗网络的图像分步补全算法.将人脸图像修复问题分为两步,设计两个串联的生成对抗网络,首先残缺图像通过预补全网络进行图像的预补全,预补全图像进入增强网络进行特征增强;判别器分别判断预补全图像和增强图像与理想图像的差异性;采用长短时记忆单元连接两部分的信息流,增强信息的传递.然后使用内容损失、对抗损失和全变分损失相结合的损失函数,提高网络的修复效果.最后在CelebA数据集上进行实验,结果显示,所提算法相较于对比算法在峰值信噪比指标上提高了16.84%~22.85%,在结构相似性指标上提高了10%~12.82%.

生成对抗网络;人脸图像;图像补全;长短时记忆;深度学习;缺失区域;跳跃连接

48

TP183(自动化基础理论)

国家自然科学基金61671377

2021-09-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

174-180

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn