基于代价敏感卷积神经网络的非平衡问题混合方法
非平衡问题是数据挖掘领域中普遍存在的一个问题,数据的偏态分布会使得分类器的分类效果不理想.卷积神经网络作为一种高效的数据挖掘工具,被广泛应用于分类任务,但其训练过程若受到数据非平衡的不利影响,则将导致少数类的分类准确率下降.针对二分类非平衡数据分类问题,文中提出了一种基于代价敏感卷积神经网络的非平衡问题混合方法.首先将密度峰值聚类算法与SMOTE相结合,通过过采样对数据进行预处理,降低原始数据集的不平衡程度;然后利用代价敏感思想对非平衡数据中的不同类别给予不同权重,并考虑预测值与标签值之间的欧氏距离,对非平衡数据中多数类和少数类赋予不同的代价损失,构建代价敏感卷积神经网络模型,以提高卷积神经网络对少数类的识别率.选取6个不同的数据集,用于验证所提方法的有效性.实验结果表明,所提方法可以提高卷积神经网络模型对非平衡数据的分类性能.
非平衡问题;卷积神经网络;过采样;数据预处理;代价敏感损失函数
48
TP391(计算技术、计算机技术)
国家自然科学基金;四川省国际科技创新合作重点项目
2021-09-17(万方平台首次上网日期,不代表论文的发表时间)
共9页
77-85