期刊专题

10.11896/jsjkx.210400130

时间感知的兴趣点推荐方法

引用
在基于位置的社交网络(Location-based Social Networks,LBSN)中,用户共享位置和与位置信息相关的内容.兴趣点推荐是LBSN的重要应用,根据用户历史访问签到记录推荐其可能感兴趣的位置.与其他推荐问题(如产品推荐或电影推荐)相比,用户对兴趣点的偏好在时间感知特征上尤为凸显.文中探索了时间感知特征对兴趣点推荐任务的影响,提出了时间感知的兴趣点推荐方法TAPR(Time Aware POI Recommendation).该算法基于不同的时间尺度构建不同的关系矩阵,并且利用张量分解将构建出的多个关系矩阵分解从而得到用户与兴趣点的表示.最后,该算法利用余弦相似性计算用户与未访问POIs的相似性得分,并结合用户偏好建模的算法得到最终推荐分数.在两个公开数据集上的实验结果表明,TAPR算法比其他基于兴趣点推荐算法表现更好.

兴趣点推荐;时间感知特征;张量分解;表示学习

48

TP311(计算技术、计算机技术)

国家自然科学基金;国家电网有限公司科技项目

2021-09-17(万方平台首次上网日期,不代表论文的发表时间)

共7页

43-49

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn