基于骨骼轨迹聚合模型的课堂交互群体发现
传统的课堂行为识别方法侧重于交互行为本身的辨识,而非群体发现.课堂环境下实现交互群体的准确定位与发现,是进行个体行为识别的基础,但存在由遮挡造成的行为数据缺失问题.使用骨骼数据表示人体行为及运动轨迹,具有不受光线和背景干扰、数据表达简单等优点.针对骨骼数据的多人交互群体发现进行研究,提出了一种基于骨骼轨迹聚合模型的交互群体发现算法(Interactive Group Discovery Algorithm Based on Skeleton Trajectory Aggregation,IGSTA).首先,将骨骼数据标准化到以人为中心的坐标系,减小尺寸变化和初始位置不同对识别精度的影响;其次,提出了一种多核表示的骨骼轨迹聚合模型,准确描述了学生交互行为群体的变化;最后,对聚合后的骨骼轨迹进行聚类,实现交互群体发现.采用Kinect获取模拟的课堂学生交互行为视频,通过实验验证了该方法的有效性,即在骨骼节点缺失的情况下,仍可准确发现课堂环境下的学生交互群体.
交互群体;骨骼数据;轨迹聚类;课堂交互
48
TP391(计算技术、计算机技术)
国家自然科学基金61977061,51934007
2021-08-20(万方平台首次上网日期,不代表论文的发表时间)
共6页
334-339