期刊专题

10.11896/jsjkx.210300079

基于LSTM的多维度特征手势实时识别

引用
手势识别广泛应用于传感领域,主要有基于计算机视觉、基于深度传感器与基于运动传感器等3种手势识别方式.基于运动传感器的手势识别具有输入数据少、速度快、直接获取手部三维信息的优点,逐渐成为当前的研究热点.传统基于运动传感器的手势识别本质为模式识别问题,其准确率严重依赖于先验经验提取的特征数据集.与传统的模式识别方法不同,深度学习可以在很大程度上减少人工启发式提取特征的工作量.为解决传统模式识别存在的问题,文中提出一种基于长短期记忆网络(LSTM)的多特征手势实时识别方法,通过充分的实验验证了该方法的性能.该方法首先定义了5种基本手势和7种复杂手势的手势库,基于手部姿态的运动学特征,进一步提取角度特征和位移特征,随后利用短时傅里叶变换(SFTF)提取传感器数据的频域特征,将3种特征输入深度神经网络LSTM中进行训练,从而对采集的手势进行分类识别.同时为了验证所提方法的有效性,通过自设计的手持式体验棒收集了6名志愿者的手势数据作为实验数据集.实验结果表明,提出的识别方法对于基本手势和复杂手势的识别准确率达到94.38%,与传统的支持向量机、K-近邻法和全连接神经网络相比,识别精度提升了近2%.

人机交互;手势识别;惯性传感器;动作捕捉

48

TP391.41(计算技术、计算机技术)

四川省科技计划资助2021YFG0159

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

328-333

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn