基于LSTM的多维度特征手势实时识别
手势识别广泛应用于传感领域,主要有基于计算机视觉、基于深度传感器与基于运动传感器等3种手势识别方式.基于运动传感器的手势识别具有输入数据少、速度快、直接获取手部三维信息的优点,逐渐成为当前的研究热点.传统基于运动传感器的手势识别本质为模式识别问题,其准确率严重依赖于先验经验提取的特征数据集.与传统的模式识别方法不同,深度学习可以在很大程度上减少人工启发式提取特征的工作量.为解决传统模式识别存在的问题,文中提出一种基于长短期记忆网络(LSTM)的多特征手势实时识别方法,通过充分的实验验证了该方法的性能.该方法首先定义了5种基本手势和7种复杂手势的手势库,基于手部姿态的运动学特征,进一步提取角度特征和位移特征,随后利用短时傅里叶变换(SFTF)提取传感器数据的频域特征,将3种特征输入深度神经网络LSTM中进行训练,从而对采集的手势进行分类识别.同时为了验证所提方法的有效性,通过自设计的手持式体验棒收集了6名志愿者的手势数据作为实验数据集.实验结果表明,提出的识别方法对于基本手势和复杂手势的识别准确率达到94.38%,与传统的支持向量机、K-近邻法和全连接神经网络相比,识别精度提升了近2%.
人机交互;手势识别;惯性传感器;动作捕捉
48
TP391.41(计算技术、计算机技术)
四川省科技计划资助2021YFG0159
2021-08-20(万方平台首次上网日期,不代表论文的发表时间)
共6页
328-333