期刊专题

10.11896/jsjkx.200900216

分类学习算法的性能度量指标综述

引用
在机器学习的分类问题研究中,对分类学习算法的正确评价是非常重要的.现实中,许多性能度量指标被从不同的角度提出,文中主要介绍了基于错误率的、基于混淆矩阵的和基于统计显著性检验的三大类性能度量指标,详细地讨论了分类学习算法各性能度量指标的提出背景、意义以及适用范围,分析了各种性能度量之间的差异,提出和分析了各方法中有待进一步研究的问题和方向.进一步,通过实验数据横向(每类度量中各方法之间的类内差异)和纵向(3类度量之间的类间差异)对照了各性能度量指标之间的差异,分析了各性能度量指标在分类算法选择上的一致性.

性能度量;错误率;混淆矩阵;统计检验

48

TP181(自动化基础理论)

国家自然科学基金;山西省应用基础研究项目;统计与数据科学前沿理论及应用教育部重点实验室开放研究课题

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共11页

209-219

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn