基于模糊颜色特征和模糊相似度的图像检索方法
基于内容的图像检索系统的性能主要依赖于两个关键技术:图像特征提取和图像特征匹配.文中提取了所有图像的颜色特征,并在颜色特征提取过程中采用了适当的模糊算法以得到图像的模糊颜色特征.图像特征匹配主要取决于两个图像特征向量之间的相似度,文中提出了一种新的模糊相似度衡量方法,该方法利用给定的查询图像与其k幅近邻图像之间的相似度构成查询图像的k维模糊特征向量,利用每幅被检索图像与查询图像的k幅近邻图像之间的相似度构成每幅被检索图像的k维模糊特征向量,计算查询图像的k维模糊特征向量与每幅被检索图像的k维模糊特征向量之间的模糊相似度,并将检索到的图像按照模糊相似度按从大到小的顺序反馈给用户.为了验证提出的模糊颜色特征的有效性,文中在WANG数据集上进行了一系列的实验对比;为了衡量基于不同相似度的图像检索系统的性能,文中在WANG,Corel-5k和Corel-10k数据集上分别进行了一系列的实验对比.实验结果表明,基于最大最小值的图像检索系统的性能优于基于其他3种常用相似度的图像检索系统的性能,而基于模糊相似度的图像检索系统的性能优于基于最大最小值的图像检索系统的性能.在WANG,Corel-5k和Corel-10k数据集上,基于模糊相似度的图像检索系统检索到的前20幅图像的平均查准率比基于最大最小值的图像检索系统检索到的前20幅图像的平均查准率分别高4.92%,17.11%和19.48%;基于模糊相似度的图像检索系统检索到的前100幅图像的平均查准率比基于最大最小值的图像检索系统检索到的前100幅图像的平均查准率分别高4.94%,22.61%和33.02%.
基于内容的图像检索;模糊颜色特征;近邻图像;模糊相似度;查准率;平均查准率
48
TP391.41(计算技术、计算机技术)
国家自然科学基金61702310,61401260
2021-08-20(万方平台首次上网日期,不代表论文的发表时间)
共9页
191-199