期刊专题

10.11896/jsjkx.200700182

基于U-Net特征融合优化策略的遥感影像语义分割方法

引用
高分辨率遥感影像的空间分辨率高、地物信息丰富、复杂程度高、各类地物的大小尺寸不一,这为分割精度的提高带来了一定的难度.为提高遥感影像语义分割精度,解决U-Net模型在结合深层语义信息与浅层位置信息时受限的问题,文中提出了一种基于U-Net特征融合优化策略的遥感影像语义分割方法.该方法采用基于U-Net模型的编码器-译码器结构,在特征提取部分沿用U-Net模型的编码器结构,提取多个层级的特征信息;在特征融合部分保留U-Net的跳跃连接结构,同时使用提出的特征融合优化策略,实现了高层语义特征与底层位置特征的融合-优化-再融合.此外特征融合优化策略还使用空洞卷积获取了更多的全局特征,并采用Sub-Pixel卷积层代替传统转置卷积,实现了自适应上采样.所提方法在ISPRS的Potsdam数据集和Vaihingen数据集上得到了验证,其总体分割精度、Kappa系数和平均交并比mIoU 3个评价指标在Potsdam数据集上分别为86.2%,0.82,0.77,在Vaihingen数据集上分别为84.5%,0.79,0.69;相比传统的U-Net模型,所提方法的3个评价指标在Potsdam数据集上分别提高了5.8%,8%,8%,在Vaihingen数据集上分别提高了3.5%,4%,11%.实验结果表明,基于U-Net特征融合优化策略的遥感影像语义分割方法,在Potsdam数据集和Vaihingen数据集上都能达到很好的语义分割效果,提高了遥感影像的语义分割精度.

深度学习;特征融合;遥感影像;空洞卷积;语义分割

48

TP391(计算技术、计算机技术)

国家重点研发计划智能机器人专项;河北省自然科学基金

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

162-168

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn