期刊专题

10.11896/jsjkx.200700134

基于深度学习SuperGlue算法的单目视觉里程计

引用
基于特征点法的视觉里程计中,光照和视角变化会导致特征点提取不稳定,进而影响相机位姿估计精度,针对该问题,提出了一种基于深度学习SuperGlue匹配算法的单目视觉里程计建模方法.首先,通过SuperPoint检测器获取特征点,并对得到的特征点进行编码,得到包含特征点坐标和描述子的向量;然后,通过注意力GNN网络生成更具代表性的描述子,并创建M×N型得分分配矩阵,采用Sinkhorn算法求解最优得分分配矩阵,从而得到最优特征匹配;最后,根据最优特征匹配进行相机位姿恢复,采用最小化投影误差法进行相机位姿优化.实验结果表明,在无后端优化的条件下,该算法与基于ORB或SIFT算法的视觉里程计相比,不仅对视角和光线变化更鲁棒,而且其绝对轨迹误差和相对位姿误差的精度均有显著提升,进一步验证了基于深度学习的SuperGlue匹配算法在视觉SLAM中的可行性和优越性.

视觉里程计;深度学习;特征匹配;SuperGlue;GNN

48

TP391.9(计算技术、计算机技术)

国家重点研发计划2016YFC0802904

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共5页

157-161

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn