期刊专题

10.11896/jsjkx.200500150

基于通道注意递归残差网络的图像超分辨率重建

引用
近年来,深度学习被广泛应用于图像超分辨率重建.针对基于深度学习的超分辨率重建方法存在的特征提取不充分、细节丢失和梯度消失等问题,提出一种基于通道注意的递归残差深度神经网络模型,用于单幅图像的超分辨率重建.该模型采用残差嵌套网络和跳跃连接构成一种简洁的递归残差网络结构,能够加快深层网络的收敛,同时避免网络退化和梯度问题.在特征提取部分,引入注意力机制来提升网络的判别性学习能力,以提取到更准确、有效的深层残差特征;随后结合并行映射重建网络,最终实现超分辨率重建.在数据集Set5,Set14,B100和Urban100上进行放大2倍、3倍和4倍的重建测试实验,并从客观指标和主观视觉效果上将所提方法与主流方法进行比较.实验结果显示,所提方法在全部4个测试数据集上的客观指标较对比方法均有明显提升,其中,相比插值法和SRCNN算法,在放大2倍、3倍、4倍时所提方法的平均PSNR值分别提升了3.965 dB和1.56 dB、3.19dB和1.42 dB、2.79 dB和1.32 dB.视觉效果对比也表明所提方法能更好地恢复图像细节.

超分辨率;深度学习;通道注意;残差网络;跳跃连接

48

TP391(计算技术、计算机技术)

国家自然科学基金;湖北省自然科学基金项目

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

139-144

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn