期刊专题

10.11896/jsjkx.200700003

融合Tamura纹理特征的改进FCM脑MRI图像分割算法

引用
针对FCM算法在分割脑MRI图像时存在噪声敏感性和初始聚类中心随机性的问题,提出一种融合图像Tamura纹理特征的改进FCM图像分割算法.首先提取图像的Tamura纹理特征,将其与灰度特征线性加权构成融合特征.然后使用模糊邻域关系计算像素点的密度,将其与距离关系结合自适应选取初始聚类中心.最后使用融合特征作为更新隶属度和聚类中心的特征约束.实验利用该方法与FCM,D-FCM,WKFCM方法对Brain Web脑MRI数据集中的图像进行分割,并在抗噪性、准确性和运行效率方面进行了比较.实验结果表明,所提算法能获取更优的初始聚类中心,在处理噪声和灰度不均匀图像上表现出更好的鲁棒性,能够快速有效地分割脑MRI图像.

模糊聚类;磁共振影像;Tamura纹理信息;线性融合;初始聚类中心

48

TP751(遥感技术)

国家重点研发计划;国家自然科学基金项目

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共7页

111-117

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn