融合Tamura纹理特征的改进FCM脑MRI图像分割算法
针对FCM算法在分割脑MRI图像时存在噪声敏感性和初始聚类中心随机性的问题,提出一种融合图像Tamura纹理特征的改进FCM图像分割算法.首先提取图像的Tamura纹理特征,将其与灰度特征线性加权构成融合特征.然后使用模糊邻域关系计算像素点的密度,将其与距离关系结合自适应选取初始聚类中心.最后使用融合特征作为更新隶属度和聚类中心的特征约束.实验利用该方法与FCM,D-FCM,WKFCM方法对Brain Web脑MRI数据集中的图像进行分割,并在抗噪性、准确性和运行效率方面进行了比较.实验结果表明,所提算法能获取更优的初始聚类中心,在处理噪声和灰度不均匀图像上表现出更好的鲁棒性,能够快速有效地分割脑MRI图像.
模糊聚类;磁共振影像;Tamura纹理信息;线性融合;初始聚类中心
48
TP751(遥感技术)
国家重点研发计划;国家自然科学基金项目
2021-08-20(万方平台首次上网日期,不代表论文的发表时间)
共7页
111-117