期刊专题

10.11896/jsjkx.201000106

基于局部回归融合的多核聚类方法

引用
针对现有多核聚类方法较少考虑多核数据局部流形结构以及在多核融合时学习参数过多进而易受多核噪声异常等干扰的问题,文中首先提出了基于局部核回归的聚类方法(CKLR).该方法通过局部学习来刻画单核数据的流形结构并采用稀疏化的局部核回归系数来进行预测和聚类.文中进一步提出了基于单核局部核回归融合的多核聚类方法(CMKLR).该方法为每个核矩阵构造对应的稀疏化的局部核回归系数,并采用全局线性加权融合的方式获得了多核数据下的局部流形结构和同样稀疏化的多核局部回归系数.所提方法较好地避免了现有方法的两个缺陷,且该方法仅包含局部邻域大小这一超参数.实验结果表明,所提方法在测试数据集上的聚类性能优于当前的主流多核聚类方法.

多核聚类;局部回归;局部学习

48

TP181(自动化基础理论)

国家自然科学基金61976129,61806003

2021-08-20(万方平台首次上网日期,不代表论文的发表时间)

共6页

47-52

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(8)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn