移动边缘计算中基于深度强化学习的任务卸载研究进展
移动边缘计算是近年出现的一种新型网络计算模式,它允许将具有较强计算能力和存储性能的服务器节点放置在更加靠近移动设备的网络边缘(如基站附近),让移动设备可以近距离地卸载任务到边缘设备进行处理,从而解决了传统网络由于移动设备的计算和存储能力弱且能量较有限,从而不得不耗费大量时间、能量且不安全地将任务卸载到远方的云平台进行处理的弊端.但是,如何让仅掌握局部有限信息(如邻居数量)的设备根据任务的大小和数量选择卸载任务到本地,还是在无线信道随时间变化的动态网络中选择延迟、能耗均最优的移动边缘计算服务器进行全部或部分的任务卸载,是一个多目标规划问题,求解难度较高.传统的优化技术(如凸优化等)很难获得较好的结果.而深度强化学习是一种将深度学习与强化学习相结合的新型人工智能算法技术,能够对复杂的协作、博弈等问题作出更准确的决策,在工业、农业、商业等多个领域具有广阔的应用前景.近年来,利用深度强化学习来优化移动边缘计算网络中的任务卸载成为一种新的研究趋势.最近三年来,一些研究者对其进行了初步的探索,并达到了比以往单独使用深度学习或强化学习更低的延迟和能耗,但是仍存在很多不足之处.为了进一步推进该领域的研究,文中对近年来国内外的相关工作进行了详细地分析、对比和总结,归纳了它们的优缺点,并对未来可能深入研究的方向进行了讨论.
移动边缘计算;深度强化学习;任务卸载;卸载决策;深度学习;强化学习
48
TP393(计算技术、计算机技术)
国家自然科学基金;广西重点研发计划项目;广西自然科学基金
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共8页
316-323