基于AGA-DBSCAN优化的RBF神经网络构造煤厚度预测方法
在构造煤厚度的预测中,经常出现因各种限制性因素而导致预测精度不高的问题,因此提出了利用自适应遗传算法优化密度聚类(DBSCAN)优化RBF神经网络参数的方法对构造煤厚度进行预测.首先,对采区三维地震属性数据进行预处理,采用主成分分析算法(PCA)对该数据降维并消除变量之间的线性相关性.然后,构建预测构造煤厚度的RBF神经网络模型,并利用DBSCAN获取最佳核心点数据,通过计算得到k-means聚类的初始聚类中心,以此优化k-means算法,进而得到RBF神经网络隐含层基函数最优的中心向量,提高该模型预测的精准性和鲁棒性.同时,针对遗传算法存在容易陷入局部最优的问题,通过随着进化次数的增多自适应地改变交叉率和变异率来改善遗传算法的全局和局部搜索能力,使之逃离局部最优点,获得更优的进化结果.此外,为了增强模型的泛化能力,对模型权重参数加入了L2正则化项,有效避免了噪声对模型泛化能力的影响.最后,将该模型应用到芦岭煤矿II六采区8#煤层中,模型预测构造煤的厚度与实际地质资料具有较高的一致性.因此,所提构造煤厚度预测模型的实际预测精度较高、误差较小,可以推广到实际采区构造煤厚度的预测.
主成分分析;遗传算法;密度聚类;中心向量;RBF神经网络;构造煤;厚度预测
48
TP183(自动化基础理论)
国家自然科学基金;江苏省自然科学基金
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共8页
308-315