基于多尺度多粒度特征的行人重识别
针对现有的基于卷积神经网络的行人重识别方法所提取的特征辨识力不足的问题,提出了一种基于多尺度多粒度特征的行人重识别方法.在训练阶段,该方法在卷积神经网络的不同尺度提取特征;然后对获得的多尺度特征图进行分块和池化,从而得到不同尺度的全局特征和局部特征的多粒度特征,使用不确定性权重调节Softmax损失和三元组损失来对特征向量进行监督训练.在推理阶段,对所获得的多尺度多粒度的特征进行融合,使用融合特征在图像库中进行相似度匹配.在Mar-ket-1501和DukeMTMC-ReID数据集上的实验表明,所提方法相比基准网络ResNet-50在Rank-1评价指标上分别提升了4.3%和3.6%,在mAP评价指标上分别提升了6.2%和6.6%.实验结果表明,所提方法能够增强提取特征的辨识力,提高行人重识别的性能.
机器视觉;卷积神经网络;行人重识别;多尺度特征;多粒度特征
48
TP399(计算技术、计算机技术)
国家自然科学基金61573182
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共7页
238-244