期刊专题

10.11896/jsjkx.200600043

基于多尺度多粒度特征的行人重识别

引用
针对现有的基于卷积神经网络的行人重识别方法所提取的特征辨识力不足的问题,提出了一种基于多尺度多粒度特征的行人重识别方法.在训练阶段,该方法在卷积神经网络的不同尺度提取特征;然后对获得的多尺度特征图进行分块和池化,从而得到不同尺度的全局特征和局部特征的多粒度特征,使用不确定性权重调节Softmax损失和三元组损失来对特征向量进行监督训练.在推理阶段,对所获得的多尺度多粒度的特征进行融合,使用融合特征在图像库中进行相似度匹配.在Mar-ket-1501和DukeMTMC-ReID数据集上的实验表明,所提方法相比基准网络ResNet-50在Rank-1评价指标上分别提升了4.3%和3.6%,在mAP评价指标上分别提升了6.2%和6.6%.实验结果表明,所提方法能够增强提取特征的辨识力,提高行人重识别的性能.

机器视觉;卷积神经网络;行人重识别;多尺度特征;多粒度特征

48

TP399(计算技术、计算机技术)

国家自然科学基金61573182

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

238-244

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn