期刊专题

10.11896/jsjkx.200800146

基于自反馈最优子类挖掘的视频异常检测算法

引用
视频异常检测算法是视频处理领域的研究热点之一,用于检测视频中是否包含异常事件.然而,由于没有异常样本参与训练过程,且异常样本与正常样本之间存在一定程度的相似性,因此很难设计出一种有辨识力的异常检测模型.为了解决上述问题,文中首先提出了一种基于相似度保持和样本恢复的特征选择方法,该方法能够保留正常样本的相似关系,进而可以学习到能够准确描述正常事件的特征.其次,将异常事件检测任务转化为分类任务,并提出了一种自反馈最优子类挖掘方法来获得最优分类器.如果一个测试样本被所有分类器判断为异常,则该样本最终将被判定为异常.在公共视频数据集(Avenue数据集、UCSD Ped2数据集)上进行的大量实验的结果表明,所提异常事件检测算法可以取得很好的结果.

视频异常事件检测;特征选择;自反馈;最优子类挖掘;一类支持向量机

48

TN911.73

国际合作与交流 NFSC项目;国家自然科学基金

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

199-205

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn