期刊专题

10.11896/jsjkx.200800224

基于深度学习特征匹配的视频超分辨率方法

引用
视频复原的目标是从给定的退化视频序列中把潜在的高质量视频复原出来.现有的视频复原方法主要集中在如何有效地找到相邻帧之间的运动信息,然后利用运动信息建立相邻帧之间的匹配.与这些方法不同,文中提出了基于深度学习特征匹配的方法来解决视频超分辨率问题.首先,通过深度卷积神经网络计算出相邻帧之间的运动信息;然后,采用一个浅层深度卷积神经网络从输入的视频帧中提取特征,基于估计到的运动信息,将浅层深度卷积神经网络提取到的特征匹配到中间视频帧对应的特征中,并将得到的特征进行有效融合;最后,采用一个深度卷积神经网络重建视频帧.大量的实验结果验证了基于深度学习特征匹配的方法能有效地解决视频超分辨率问题.与现有的基于视频帧匹配的方法相比,所提方法在现有的公开视频超分辨率数据集上取得了较好的效果.

视频复原;视频超分辨率;深度卷积神经网络;特征匹配;运动估计

48

TP751(遥感技术)

国家自然科学基金61872421

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

184-189

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn