期刊专题

10.11896/jsjkx.200600096

融入结构度中心性的社交网络用户影响力评估算法

引用
在社交网络中,通过追踪极少数的强影响力用户,可以实现宏观管控信息的传播过程,而用户影响力是一种无法预判的后验信息,仅能依靠有关特征来确定.因此,提出了一种融入结构度中心性的社交网络用户影响力评估(Structural-Degree-Centrality User Influence Rank,SDRank)算法来识别强影响力用户.该算法基于PageRank算法,引入了结构度中心性,结合了加入时间与平均转发数的调节因子,进而计算出用户的影响力值.相较于其他的现有算法,SDRank算法仅从用户本身的行为角度出发,不需要诸如个人标签、粉丝等存在伪造风险与缺省可能的具体信息,也不必挖掘传播内容的潜在信息,适用性更广泛.以微博用户的级联转发数据集作为实验对象,对被转发数排名Top-K用户的平均转发数等相关结果进行了可视化分析,探讨了用户转发行为在社交网络信息传播中的作用.在实验过程中,所提算法与PageRank,TrustRank算法相比,准确率、召回率和F1-measure值都有了一定的提高,验证了SDRank算法的有效性.

用户影响力;度中心性;用户行为;社交网络

48

TP391(计算技术、计算机技术)

国家自然科学基金;四川省区域创新合作项目;四川省科技计划;博士后基金项目;广东省国家重点实验室项目;网络与数据安全四川省重点实验室开放课题

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

124-129

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn