期刊专题

10.11896/jsjkx.200600010

基于信息携带的SQL注入攻击检测方法

引用
目前,基于传统机器学习的SQL注入攻击检测的准确度仍有待提高,产生这一问题的主要原因是:在提取特征向量时,若选择的特征向量过多,则会导致模型过拟合,并影响算法的效率;若选择的特征向量过少,则会产生大量的误报数和漏报数.针对这一问题,文中提出了一种基于信息携带的SQL注入攻击检测方法SQLIA-IC.SQLIA-IC在机器学习的检测基础上加入了标记器和内容匹配模块,标记器用于检测样本中的敏感信息,内容匹配模块用于对样本进行特征项匹配,以达到二次判断的目的.为了提高SQL注入攻击检测的效率,利用信息值简化机器学习和标记器的检测结果,在内容匹配模块中根据样本携带的信息值进行动态匹配.仿真实验结果表明,相比传统的机器学习方法,所提方法的准确率平均高出2.62%,精确率平均高出4.35%,召回率平均高出0.96%,而时间损耗仅增加了5 ms左右,便能够快速、有效地检测出SQL注入攻击.

机器学习;特征项匹配;信息携带;SQL注入攻击;入侵检测

48

TP181(自动化基础理论)

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

70-76

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn