基于变分自编码器的不平衡样本异常流量检测
随着机器学习技术的快速发展,越来越多的机器学习算法被用于攻击流量的检测与分析,然而攻击流量往往只占网络流量中极小的一部分,在训练机器学习模型时存在训练集正负样本不平衡的问题,从而影响模型训练效果.针对不平衡样本问题,文中提出了一种基于变分自编码器的不平衡样本生成方法,其核心思想是在对少数样本进行扩充时,不是对全部进行扩充,而是分析这些少数样本,对其中最容易对机器学习产生混淆效果的少数边界样本进行扩充.首先,利用KNN算法筛选出少数类样本中与多数类样本最近的样本;其次,使用DBSCAN算法对KNN算法筛选出的部分样本进行聚类处理,生成一个或多个子簇;然后,设计变分自编码网络模型,对DBSCAN算法区分出的一个或多个子簇中的少数类样本进行学习扩充,并将扩充后的样本加入原有样本中用于构建新的训练集;最后,利用新构建的训练集来训练决策树分类器,从而实现异常流量的检测.选择召回率和F1分数作为评价指标,分别以原始样本、SMOTE生成样本、SMOTE改进方法生成样本和文中所提方法生成样本为训练集进行对比实验.实验结果表明,在4种异常类型中,采用所提算法构造训练集训练的决策树分类器在召回率和F1分数上都有提升,F1分数相比原始样本及SMOTE方法最高提升了20.9%.
异常流量;过采样;变分自编码器;不平衡样本;KNN;DBSCAN
48
TP391(计算技术、计算机技术)
国家重点研发计划2019YFB2101704
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共8页
62-69