期刊专题

10.11896/jsjkx.210100095

对抗攻击威胁基于卷积神经网络的网络流量分类

引用
深度学习算法被广泛地应用于网络流量分类,具有较好的分类效果,应用卷积神经网络不仅能大幅提高网络流量分类的准确性,还能简化其分类过程.然而,神经网络面临着对抗攻击等安全威胁,这些安全威胁对基于神经网络的网络流量分类的影响有待进一步的研究和验证.文中提出了基于卷积神经网络的网络流量分类的对抗攻击方法,通过对由网络流量转换成的深度学习输入图像添加人眼难以识别的扰动,使得卷积神经网络对网络流量产生错误的分类.同时,针对这种攻击方法,文中也提出了基于混合对抗训练的防御措施,将对抗攻击形成的对抗流量样本和原始流量样本混合训练以增强分类模型的鲁棒性.文中采用公开数据集进行实验,实验结果表明,所提对抗攻击方法能导致基于卷积神经网络的网络流量分类方法的准确率急剧下降,通过混合对抗训练则能够有效地抵御对抗攻击,从而提高模型的鲁棒性.

机器学习;深度学习;对抗攻击;流量分类;对抗训练

48

TP391(计算技术、计算机技术)

四川省科技计划项目2020YFSY0010

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

55-61

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn