对抗攻击威胁基于卷积神经网络的网络流量分类
深度学习算法被广泛地应用于网络流量分类,具有较好的分类效果,应用卷积神经网络不仅能大幅提高网络流量分类的准确性,还能简化其分类过程.然而,神经网络面临着对抗攻击等安全威胁,这些安全威胁对基于神经网络的网络流量分类的影响有待进一步的研究和验证.文中提出了基于卷积神经网络的网络流量分类的对抗攻击方法,通过对由网络流量转换成的深度学习输入图像添加人眼难以识别的扰动,使得卷积神经网络对网络流量产生错误的分类.同时,针对这种攻击方法,文中也提出了基于混合对抗训练的防御措施,将对抗攻击形成的对抗流量样本和原始流量样本混合训练以增强分类模型的鲁棒性.文中采用公开数据集进行实验,实验结果表明,所提对抗攻击方法能导致基于卷积神经网络的网络流量分类方法的准确率急剧下降,通过混合对抗训练则能够有效地抵御对抗攻击,从而提高模型的鲁棒性.
机器学习;深度学习;对抗攻击;流量分类;对抗训练
48
TP391(计算技术、计算机技术)
四川省科技计划项目2020YFSY0010
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共7页
55-61