基于深度强化学习的智能化渗透测试路径发现
渗透测试是通过模拟黑客攻击的方式对网络进行安全测试的通用方法,传统渗透测试方式主要依赖人工进行,具有较高的时间成本和人力成本.智能化渗透测试是未来的发展方向,旨在更加高效、低成本地进行网络安全防护,渗透测试路径发现是智能化渗透测试研究的关键问题,目的是及时发现网络中的脆弱节点以及攻击者可能的渗透路径,从而做到有针对性的防御.文中将深度强化学习与渗透测试问题相结合,将渗透测试过程建模为马尔可夫决策模型,在模拟网络环境中训练智能体完成智能化渗透测试路径发现;提出了一种改进的深度强化学习算法Noisy-Double-Dueling DQNper,该算法融合了优先级经验回放机制、双重Q网络、竞争网络机制以及噪声网络机制,在不同规模的网络场景中进行了对比实验,该算法在收敛速度上优于传统DQN(Deep Q Network)算法及其改进版本,并且适用于较大规模的网络场景.
网络安全;深度强化学习;渗透测试;路径发现;DQN算法
48
TP393(计算技术、计算机技术)
2021-08-19(万方平台首次上网日期,不代表论文的发表时间)
共7页
40-46