期刊专题

10.11896/jsjkx.210300299

基于特征梯度的调制识别深度网络对抗攻击方法

引用
基于深度神经网络(Deep Neural Network,DNN)的自动调制识别(Automatic Modulation Recognition,AMR)模型具有特征自提取、识别精度高、人工干预少的优势.但是,业界在设计面向AMR的DNN(AMR-oriented DNN,ADNN)模型时,往往仅关注识别精度,而忽视了对抗样本可能带来的安全威胁.为此,文中从人工智能安全的角度出发,探究了对抗样本对ADNN模型的安全威胁,并提出了一种新颖的基于特征梯度的对抗攻击方法.相比传统标签梯度的攻击方式,特征梯度攻击方法能够更有效地攻击ADNN提取的调制信号空时特征,且具有更好的迁移性.在公开数据集上的实验结果表明,无论白盒攻击还是黑盒攻击,所提出的基于特征梯度的对抗攻击方法的攻击效果和迁移性均优于当前的标签梯度攻击方法.

自动调制识别;调制信号;深度学习;神经网络;对抗样本

48

TP183(自动化基础理论)

国家自然科学基金;江苏省自然科学基金

2021-08-19(万方平台首次上网日期,不代表论文的发表时间)

共8页

25-32

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn