期刊专题

基于核保持嵌入的子空间学习

引用
子空间学习是特征提取领域中的一个重要研究方向,其通过一种线性或非线性的变换将原始数据映射到低维子空间中,并在该子空间中尽可能地保留原始数据的几何结构和有用信息.子空间学习的性能提升主要取决于相似性关系的衡量方式和特征嵌入的图构建手段.文中针对子空间学习中的相似性度量与图构建两大问题进行研究,提出了一种基于核保持嵌入的子空间学习算法(Kernel-preserving Embedding based Subspace Learning,KESL),该算法通过自表示技术自适应地学习数据间的相似性信息和基于核保持的构图.首先针对传统降维方法无法挖掘高维非线性数据的内部结构问题,引入核函数并最小化样本的重构误差来约束最优的表示系数,以期挖掘出有利于分类的数据结构关系.然后,针对现有基于图的子空间学习方法大都只考虑类内样本相似性信息的问题,利用学习到的相似性矩阵分别构建类内和类间图,使得在投影子空间中同类样本的核保持关系得到加强,不同类样本间的核保持关系被进一步抑制.最后,通过核保持矩阵与图嵌入的联合优化,动态地求解出最优表示下的子空间投影.在多个数据集上的实验结果表明,所提算法在分类任务中的性能优于主流的子空间学习算法.

子空间学习、图构建、相似性学习、核保持嵌入

48

TP391(计算技术、计算机技术)

国家重点研发计划;国家自然科学基金;国家自然科学基金;陕西省自然科学基础研究计划;陕西省自然科学基础研究计划

2021-06-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

79-85

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(6)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn