期刊专题

10.11896/jsjkx.200300043

扩散式变阶数最大相关熵准则算法

引用
固定阶数的分布式自适应滤波算法只有在待估计向量的阶数已知且恒定的情况下才能达到相应的估计精度,在阶数未知或时变的情况下算法的收敛性能会受到影响,变阶数的分布式自适应滤波算法是解决上述问题的有效途径.但是目前大多数分布式变阶数自适应滤波算法以最小均方误差(Mean square Error,MSE)准则作为滤波器阶数的代价函数,在脉冲噪声环境下算法的收敛过程会受到较大影响.最大相关熵准则具有对脉冲噪声的强鲁棒性,且计算复杂度低.为提高分布式变阶数自适应滤波算法在脉冲噪声环境下的估计精度,利用最大相关熵准则作为滤波器阶数迭代的代价函数,并将得到的结果代入固定阶数的扩散式最大相关熵准则算法,提出了一种扩散式变阶数最大相关熵准则(Diffusion Variable Tap-length Maximum Correntropy Criterion,DVTMCC)算法.通过与邻域的节点进行通信,所提算法以扩散的方式实现了整个网络的信息融合,具有估计精度高、计算量小等优点.仿真实验对比了在脉冲噪声下DVTMCC算法和其他分布式变阶数自适应滤波算法、固定阶数的扩散式最大相关熵准则算法的收敛性能.仿真结果表明,在脉冲噪声环境下DVTMCC算法能够同时估计未知向量的阶数和权值,性能优于参与对比的算法.

自适应网络、扩散式策略、最大相关熵准则、变阶数、脉冲噪声

48

TN911.72

2021-06-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

263-269

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn