期刊专题

10.11896/jsjkx.200600181

双领导者樽海鞘群算法

引用
为了提升樽海鞘群(Salp Swarm Algorithm,SSA)算法的求解精度和全局搜索能力,提出了一种基于正态过程搜索和差分进化(Differential Evolution,DE)算法的改进樽海鞘群算法——双领导者樽海鞘群算法(Two Types of Leaders Salp Swarm Algorithm,TTLSSA).该算法设置了两类领导者和两种跟随群体,其中执行正态过程搜索的领导者需要进行正态过程游走、交叉、选择等操作,主要用于全局勘探;当前最优解附近的领导者在随迭代次数呈锯齿状变化的参数gap的影响下,兼顾了全局搜索和局部开发两种功能.用18个不同类型的标准测试函数检验所提算法的性能,并与DE、SSA、正弦余弦算法(Sines and Cosines Algorithm,SCA)、灰狼优化(Grey Wolf Optimizer,GWO)算法以及鲸鱼优化算法(Whale Optimization Algorithm,WOA)做对比,TTLSSA在16个测试函数上的平均精度排名第1或并列第1,在2个测试函数上的平均精度排名第2,在6种算法中平均耗时排名第2,说明了TTLSSA在没有增加SSA时间成本的前提下,显著提升了优化能力.

差分进化、樽海鞘群算法、正态过程、测试函数

48

TP181(自动化基础理论)

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共7页

254-260

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn