期刊专题

10.11896/jsjkx.200100036

面向中文电子病历的多粒度医疗实体识别

引用
在现有的面向中文临床电子病历的命名实体识别任务中,实体标注粒度通常过细或过粗,过细的标注结果难以找到实际应用场景,而过粗的标注结果通常需要在进行复杂的处理后,才能明确实体的规范形式和语义类型,以便于后续的数据挖掘应用.为简化处理步骤,根据常见的7类粗粒度临床实体的特点,定义了用以解释粗粒度实体的9类细粒度解析实体.同时,针对多粒度实体的特点,提出了基于多任务学习和自注意力机制的多粒度临床实体识别模型,并在真实的医院电子病历库中标注了5000条包含多粒度实体的文本以验证模型的效果.实验结果表明,该模型优于主流的序列标注模型,在粗、细粒度实体识别任务中,两者的F 1值分别达到了92.88和85.48.

电子病历、多粒度实体识别、多任务学习

48

TP391(计算技术、计算机技术)

"精准医学研究"重大专项项目;国家自然科学基金项目

2021-04-19(万方平台首次上网日期,不代表论文的发表时间)

共6页

237-242

暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn